
www.manaraa.com

Electrical and Computer Engineering Conference
Papers, Posters and Presentations Electrical and Computer Engineering

7-9-2019

Identification of the Impacts of Code Changes on
the Security of Software
Moataz Abdelkhalek
Iowa State University, moataz@iastate.edu

Ameerah-Muhsina Jamil
Iowa State University, amjamil@iastate.edu

Lotfi ben Othmane
Iowa State University, othmanel@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/ece_conf

Part of the Electrical and Computer Engineering Commons, Information Security Commons,
and the Software Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Electrical and Computer Engineering at Iowa State University Digital
Repository. It has been accepted for inclusion in Electrical and Computer Engineering Conference Papers, Posters and Presentations by an authorized
administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Abdelkhalek, Moataz; Jamil, Ameerah-Muhsina; and ben Othmane, Lotfi, "Identification of the Impacts of Code Changes on the
Security of Software" (2019). Electrical and Computer Engineering Conference Papers, Posters and Presentations. 78.
https://lib.dr.iastate.edu/ece_conf/78

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fece_conf%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fece_conf%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/ece_conf?utm_source=lib.dr.iastate.edu%2Fece_conf%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/ece_conf?utm_source=lib.dr.iastate.edu%2Fece_conf%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/ece?utm_source=lib.dr.iastate.edu%2Fece_conf%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/ece_conf?utm_source=lib.dr.iastate.edu%2Fece_conf%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fece_conf%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=lib.dr.iastate.edu%2Fece_conf%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=lib.dr.iastate.edu%2Fece_conf%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/ece_conf/78?utm_source=lib.dr.iastate.edu%2Fece_conf%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Identification of the Impacts of Code Changes on the Security of Software

Abstract
Companies develop their software in versions and iterations. Ensuring the security of each additional version
using code review is costly and time consuming. This paper investigates automated tracing of the impacts of
code changes on the security of a given software. To this end, we use call graphs to model the software code,
and security assurance cases to model the security requirements of the software. Then we relate assurance case
elements to code through the entry point methods of the software, creating a map of monitored security
functions. This mapping allows to evaluate the security requirements that are affected by code changes. The
approach is implemented in a set of tools and evaluated using three open-source ERP/E-commerce software
applications. The limited evaluation showed that the approach is effective in identifying the impacts of code
changes on the security of the software. The approach promises to considerably reduce the security
assessment time of the subsequent releases and iterations of software, keeping the initial security state
throughout the software lifetime.

Keywords
Software security, security assurance case, incremental development, code change impact

Disciplines
Electrical and Computer Engineering | Information Security | Software Engineering

Comments
This is a manuscript of a proceeding published as Abdelkhalek, Moataz, Ameerah-Muhsina Jamil, and Lotfi
ben Othmane. "Identification of the Impacts of Code Changes on the Security of Software." 2019 IEEE 43rd
Annual Computer Software and Applications Conference (COMPSAC): 569-574. DOI: 10.1109/
COMPSAC.2019.10268. Posted with permission.

Rights
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

This conference proceeding is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/ece_conf/78

http://dx.doi.org/10.1109/COMPSAC.2019.10268
http://dx.doi.org/10.1109/COMPSAC.2019.10268
https://lib.dr.iastate.edu/ece_conf/78?utm_source=lib.dr.iastate.edu%2Fece_conf%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

Identification of the Impacts of Code Changes on the Security of
Software

Moataz Abdelkhalek, Ameerah-Muhsina Jamil, and Lotfi ben Othmane

Iowa State University, Ames, IA, USA

Abstract— Companies develop their software in versions
and iterations. Ensuring the security of each additional
version using code review is costly and time consuming.
This paper investigates automated tracing of the impacts
of code changes on the security of a given software. To this
end, we use call graphs to model the software code, and
security assurance cases to model the security requirements
of the software. Then we relate assurance case elements
to code through the entry point methods of the software,
creating a map of monitored security functions. This map-
ping allows to evaluate the security requirements that are
affected by code changes. The approach is implemented in
a set of tools and evaluated using three open-source ERP/E-
commerce software applications. The limited evaluation
showed that the approach is effective in identifying the
impacts of code changes on the security of the software.
The approach promises to considerably reduce the security
assessment time of the subsequent releases and iterations
of software, keeping the initial security state throughout
the software lifetime.

I. Introduction

The economic impacts of cyber-security have led
companies to adopt secure software development prac-
tices [1], including security assurance: ensuring the
software fulfills its security requirements. The common
approach to identify code-level vulnerabilities, such as
buffer overflow, is to use code analysis techniques [2],
which can parse large software in reasonable time. Logic
flaws, such as broken authentication and broken access
control, which account for 50% of the vulnerabilities [3],
[4] cannot be detected by code analysis techniques.

1 public void changedClass
2 {
3 public void writeToFile(String myInput)
4 {// Do Something
5 FileIOPermission myPerm =
6 new FileIOPermission(PermissionState.Read);
7 // Change to: Unrestricted
8 myPerm.Demand();
9 // Do Something

10 }}

Listing 1. An example of risky code change.

Assume that we have a login function that uses the
writeToFile method from class changedClass of
Listing 1 and assume that a developer changes
the value of PermissionState used in the
FileIOPermisison from Read to Unrestricted.
The common security assessment tools do not detect

the impacts of this code change because the change
impacts the logic, not the structure. The security experts
may not detect the problem using manual review of
the security-critical code chunks, the login function
code, because the change is not in the login function
itself, but in one of its dependencies. Failure to detect
the impact of this code change can lead to serious
privilege escalation vulnerabilities.

Code changes are changes to the software code
that may introduce new functionality to the software,
fix existing defects, or adapt the software to changes
in its environment, cf. [5]. These changes can break
the security of the software. Currently, there are two
common approaches to identify code changes that
impact the security of a software. The first approach
requires the senior developers to discuss the security
impacts of each change request before making the
change. This approach is frequently used, especially for
open source software although it is time consuming [4].
The second approach is to have annotations in the code
itself to mark the security aspects related to the given
code portion. The annotations warn the developers
who change the code of these components about the
implication of these changes on the security of their
software [6].

The used approaches are time-consuming and prone
to omission and commission errors. First, they con-
sider security aspects in a conceptual way and not as
mechanisms. For instance, they consider the impact of
code changes on access control and not how access
control may fail due to code change. Second, the
approaches rely on the understanding of the experts of
the interactions between the software components; that
is, on the architecture view the developers make based
on their experience with the code of the software.

This paper investigates automated tracing of the
impacts of code changes on the security of the given
software. To this end, we (1) model the software code
using the call graph technique, which represents the
calling relationships between the functions/methods of
the software, (2) model the security assurance of the
software using security assurance cases, and (3) relate
assurance case elements to the code through code entry
points, which compose the attack surface of software.

The contributions of the paper are:
1) Propose an approach to trace the impact of code

www.manaraa.com

LoaderAction.run()

doPrivileged

SystemClassLoaderUpdaterNSProviderCreator

InetAddress.run()

Fig. 1. Simplified part of generated call graph of OpenZ ERP
application.

changes on the security of the given software.
2) Develop a set of tools that implement the proposed

approach for secure code changes.
3) Evaluate the proposed approach and tool-set using

three open-source software.
The paper is organized as follows. First, we give a

primer on security assurance and call graph in Section II
and discuss related work in Section III. Next, we
describe the proposed approach in Section IV and the
components of the system in Section V. Then, we report
about the results of evaluating the approach on three
open-source software in Section VI and conclude the
paper in Section VII.

II. Background

This section gives an overview on security assurance
cases and call graphs.

A. Assurance Cases
Security assurance is the degree of confidence that

the security requirements are satisfied [7]; it is the level
of trust that the software meets its security specifica-
tions and does not perform unintended functions that
compromise its security [8].

The security assurance of a software could be de-
scribed using a security assurance case: a semi-formal
graphical representation of a collection of security-
related claims, arguments and pieces of evidence that
can prove that a software exhibits a security prop-
erty [9], [10]. Security claims, aka security goals, are
high-level security requirements. The pieces of evidence
are the results of the verification of the claims through,
for example, security tests, security code reviews, and
proofs. An argument is a justification that evidence sets
support the related claim.

The Goals-Structuring Notation (GSN) is a common
way to represent assurance cases [11]. It is a graphical
argumentation notations that represent the claims, evi-
dence sets, arguments, and the relationships between
them in a tree structure. Figure 3 illustrates an example
of a partial security assurance case, which will be
explained in Section VI.

B. Call Graphs
A program call graph is a compile-time data structure

that represents the run-time calling relationships among
a program’s methods or functions [12], [13]. Each node

of the graph represents a method/function and each
edge that links two nodes represents a call relationship
between these two methods/functions. Call graphs
are commonly used in inter-procedural static analysis
including compilers, verification tools and program
analysis tools [14]. Programs often include pointers and
conditions for methods/functions calls. The call graph
tools consider such program complexities to ensure
accurate construction of call graphs from programs [12].

Figure 1 shows an example of a simplified small
section of a call graph obtained from analyzing
one of our test applications. We observe in this
example that method doPrivileged() is called
by methods SystemClassLoader(), Updater(),
and NSProviderCreator() and calls methods
LoaderAction.run() and InetAddress.run().

III. Related Work

The common approaches for software security as-
surance focus on ensuring that the security properties
are enforced at each version of the software. They
have a significant cost associated with their use in
time and resources [15], [4]. This led to the idea to
investigate the evolution of security requirements and
design of a software, with the assumption that the code
of the software represents the updated requirements and
design [16]. Jurjens et al. [15], for example, extended the
UML models with security annotations, called UMLSec,
and investigated the use of design models to support
the multiple evolution paths and the incremental verifi-
cation process of the evolving models.

Bosu and Carver conducted an empirical evaluation
of peer-code review of Open Source Software (OSS) to
detect security vulnerabilities [17]. They developed a
Java application to mine the text related to the security
flaws from the code review comments and stored the
mining results in a database. They query the database
using specific keywords and inspect results manually.
They found that code review indeed helps in identifying
and removing security vulnerabilities. In another work,
Bosu et. al. analyzed the security vulnerabilities that
could be discovered by code review, identified the
characteristics of vulnerable code, and the developers
that wrote it [18]. They found that the common types
of identified vulnerabilities are buffer overflow and
cross-site scripting. In addition, they found that the
number of line changes also affects the likelihood of
vulnerabilities and modified files have higher likelihood
to have vulnerabilities than the new ones.

Rapid Release Change (RCC) had attracted re-
searchers in a way that frequent releases of new features
are likely to increase the number of vulnerabilities
and the discovery rate. Clark et al. [19] investigated
the relation between RCC adapted by Firefox and the
different security vulnerabilities. Firefox, which adapted
RCC, releases a new version every 6 weeks. The authors
found that vulnerabilities are disclosed in newer code

2

www.manaraa.com

as often as the older code. The authors also found that
frequent releases increase the time needed by attackers
to learn the software code, which forces them to adapt
their tools to cope with the changes.

Vanciu and Abi-Antoun mentioned in [6] that half of
the security vulnerabilities are caused by the flaws in the
architecture of the system. They proposed Scoria, a semi-
automated approach to find architectural flaws that can
be used during Architectural Risk Analysis (ARA). The
main features of Scoria are the use of static analysis
to extract from the code, the use of queries to assign
security properties to objects and edges, and the use of
dataflow to trace code from edges that the constraints
highlight that potential architectural flaws exist. The
results of the study prove Scoria ability to detect security
vulnerabilities that cause architectural flaws. However,
the focus was only on detecting information disclosure
and tampering vulnerabilities.

Othmane et al. [20] proposed integrating security re-
assurance into the agile software development processes
to ensure the security of the developed software with
each iteration. In addition, they demonstrated the use of
the technique to iteratively develop security features that
fulfill their security requirements [21]. The process helps,
for example, to identify customer change requests that
conflict with the security requirements of the iteration.
In a subsequent work, they analyzed the impacts of
incremental secure software development for an existing
open source software, Zen Cart [4].

The existing solutions for security assurance in the
literature require full reassessment or are adhoc, e.g.,
using keywords search, which can be ineffective. This
paper proposes tracing the code changes to the security
requirements that they affect, if any. This should reduce
the cost of security reassurance and maintain the
security of the software throughout its lifetime.

IV. Approach

The approach hypothesizes that code changes could
be traced to the security requirements. To identify the
impacts of code changes on the security of software,
we model (1) the software code, (2) the security re-
quirements of the software and (3) the relationship
between the software code and its security requirements.
The entry points are the source of data that flow into
software [22]. Thus, security requirements are strongly
related to the entry points of the software, since attacks
happen by sending or receiving data to the system
[23] using channels, such as open ports, connection
sockets, and input forms. Hence, if code changes could
be tracked to entry points, having a code path from
the given entry point to the changed code portion,
would indicate if the change is security-related. A
security-related change can then be flagged for intensive
reviewing.

Several techniques are used to implement the pro-
posed approach. First, we represent software code with

Algorithm 1 Identify code changes that impact the
security of the software

Input CallGraph
Input AssuranceCase
Input FunctionAssuranceCaseMap
Output SuspiciusCodeChanges

procedure DetectSuspiciousChanges

ChangeList← IdentifyChangedFunctions()
TopNode
← getMonitoredNodes(FunctionAssuranceCaseMap)
while ChangeList 6= ∅ do

changedNode← ChangeList.pop()
PathsList← getPathList(changedNode,TopNode)
if (PathsList 6= ∅) then

SuspiciusCodeChanges
← SuspiciusCodeChanges

⋃
changedNode

Return SuspiciusCodeChanges
End

call graphs, which represent the calling relationships
between the functions/methods of the software. We
used the open-source static code analysis tool T. J.
Watson Libraries for Analysis (WALA) [24] to gener-
ate the call graph of a given software. For software
analysis, WALA was chosen because it (1) produces low
overhead in performance and time, (2) supports several
programming languages including Java and JavaScript
and (3) can be extended to support more languages.

Second, we model the security requirements of the
software using security assurance cases. The assurance
cases are used at the design phase of the software
to specify graphically the security requirements of
the software and choose the security mechanisms that
address them. In addition, in the testing phase, it can
be used in the security assessments of the software to
verify the security of the software.

Third, the assurance case elements are manually
related to the corresponding methods of the software.
This mapping requires expertise knowledge of the
software and its security requirements. In this phase, de-
velopers and security administrators should be involved
to ensure correct and accurate mapping.

Fourth, as developers use version control systems
such as Git [25] to trace code changes; to ensure
alignment in our toolset; we used integration with the
Git versioning system to track and detect code changes.
Then, these changes were mapped to corresponding
functions and classes.

These four main steps allow us to detect and map
the code changes to the assurance cases that reflect the
security requirements of the given software. As depicted
by Algorithm 1, the DetectSuspiciousChanges
mechanism monitors the storage of the software for
new versions using Git, detects the code changes,
and identifies the methods/functions that the changes

3

www.manaraa.com

CallGraph Generator

Java Input Files

Filtration

DOT Parser

New Version (changed)
Java Input Files

Assurance Case to
Code Link Generator

In
it

ia
ti

on
Ph

as
e

List of
Affected
Security

Requirements

Assurance Case
Generation

Software Security
Requirements

List of Paths
Between
Changed

and
Monitored

Nodes

If Paths
from Changed
to Monitored

Exist

Code Tracking AlgorithmList of Monitored Nodes

List of Changed Nodes

Automated Change
Detection Module

A
nalysis

Phase

Assurance
Case

Generation

Non-Security
related
change

(Safe Change)

YES NO

Fig. 2. Components of the System

belong to. Then, it uses the call graph to identify
the paths that link the identified methods/functions
to the ones associated with the security assurance
claims of the software. Changes related to assurance
cases are flagged as suspicious changes that require
comprehensive review to ensure they do not break the
security requirements of the software.

V. System overview - Secure code change analysis

toolset

We developed a set of tools to assist developers and
security experts to create call graphs, design security
assurance cases, and map the security claims and
evidence parts of the assurance case to the related entry
point methods of the given software. Figure 2 shows the
interactions between the components of the approach,
as discussed in the previous section.

We developed a graphical tool to design security
assurance cases for the software [26] as an Eclipse
plug-in. The tool supports adding and removing se-
curity claims, arguments or rational, evidence sets, and
strategy nodes to a security assurance case, storing
the assurance case in an XML format for further use.
In addition, we developed a module that creates the
call graph of the given software using WALA [24]
and produces a call graph file in the DOT format
that can be later parsed using graphical tools.1 With
the help of the graphical call graphs, the previously
developed assurance case elements could be associated
to corresponding methods/functions of the software
marking them as monitored nodes in the call graph.
To automatically detect changes, we also developed

1The call graph file could be visualized using tools, such as
Graphviz [27].

a module that continuously queries the software Git
repository to identify the delta cumulative changes of
any two versions of a given software.

Finally, we developed a Code Tracking Algorithm that
searches all the possible paths between the detected
changed nodes and the monitored nodes; the ones
associated with the security assurance cases. Then, the
changed methods included in the identified paths are
flagged as suspicious and the claims associated with the
related monitored methods are flagged as potentially
broken and should be reviewed manually.

VI. Evaluation of the proposed approach

We selected three software applications to evaluate
our approach, which are: Compiere,2 Shopizer,3 and
OpenZ.4. The used selection criteria are: (1) written in
Java, (2) be an open-source security-sensitive software,
(3) completeness of the software source code, (4) having
recent and regular updates, and (5) have high frequency
of downloads. Table I provides the details of the selected
software applications.

We applied the workflow of Figure 2 for the three
software applications. In the first phase, the initiation
phase, we created the security assurance cases of the
software based on the Payment Card Industry (PCI) [28]
and the OWASP top 10 requirements [29]. These choices
were made because the chosen software applications
are financial and the original software security require-
ments were not available. Figure 3 shows the security
assurance case for the safe authentication and session
management of Compiere application. Next, we created

2https://sourceforge.net/projects/compiere/
3https://github.com/shopizer-ecommerce/shopizer
4https://sourceforge.net/projects/openz/

4

www.manaraa.com

TABLE I
List of selected open-source software.

Application Lines of Code Function Calls Classes Avg Methods/Class Last Updated Last version
OpenZ 1727793 846364 3456 19 Sep 2018 3.5.0
Compiere limited version 22059 4257 136 7 Nov 2016 1.3.0
Compiere Full
version + Oracle XE 649571 154917 2289 15 Mar 2017 Community Edition 3.5

Shopizer 106858 26705 961 6 Dec 2018 2.3.0

Fig. 3. Assurance Case for session management in Compiere application

the call graphs for each of the software using software
analysis module. Table II provides the performance of
the code analysis and call graph generation module.
After that, we associated the methods to their related
security claims. Table III gives a simplified map that
we developed for the session management claims for
Compiere application. This phase resulted into a set
of security-sensitive methods that the system needs to
monitor.

The second phase of the workflow, as depicted by Fig-
ure 2 consists of capturing the impacts of code changes
on the security of the software. To increase the number
of test-cases, we applied the analysis on a large number
of changes using different versions of the software
applications, in addition to, intentionally injected code
changes. Then, we applied the identification of code
changes tool and the code tracking algorithm to identify
whether the code changes are associated with any of
the security-sensitive entry-point methods.

The results showed that the toolset could detect all
the security related changes successfully. In addition,
the overhead of using the toolset was very low, as it
processes software that has a call graph with up-to 500
nodes in 1 seconds, up-to 1000 nodes in 20-50 seconds,
and up-to 2500 nodes in 5 minutes. The call graph

TABLE II
Performance measurement of the call graph generation tool.

Initiation Phase
Application No. of nodes Time

OpenZ 846364 9 min 36 sec
Compiere limited version 4257 11 sec
Compiere Full version + Oracle XE 154917 2 min 14sec
Shopizer 26705 20 sec

generated with the tool was filtered using keywords
to select the security-sensitive portions of the code, to
improve the performance of the analysis.

Although, the evaluation of the approach is limited
to three software applications, we experimented with
a good number of test-cases, which showed that the
approach is effective in identifying the impacts of code
changes on the security of the software. The approach
promises to considerably reduce the security assessment
time of the subsequent releases and iterations of soft-
ware, keeping the initial security state throughout the
software lifetime. We intend to improve the usability
of the toolset and extensively evaluate it using more
commonly used security-sensitive software.

5

www.manaraa.com

TABLE III
Map of the security sub-claims of the session fixation claim

and their entry point methods in Compiere application.

Assurance Case Element Associated Methods
User authentication credentials
are protected in storage

util.Login.checkPermission()

No weak credentials used security.AccessControl
Context.checkPermission()

Strong session management process.SessionStartAll.clinit()
process.SessionEndAll.main()

Secure transmission of Pass-
words, session IDs, and other
credentials

security.PermissionsHash.add()
db.TestConnection()

Protection against automated
attacks such as brute forcing

apps.ProcessCtl()
process.SvrProcess()
process.FactAcctReset()

Strong effective registration,
credential recovery and forgot
password processes

DB.Oracle()
model.Registration()

VII. Conclusion

We developed a toolset that trace the impacts of
code changes on the security of a given software and
evaluated it using three open-source software applica-
tions. We found that the proposed approach successfully
identifies the security impacts of code changes and
proves our hypothesis. It needs, though, a thorough
evaluation with commonly used software to assess its
capabilities and limitations. The approach would help to
considerably reduce the security code review time and
the time that developers spend discussing the impacts
of the proposed code changes on the security of the
software.

Acknowledgment

The authors thank Mike Johnson and Jim McClurg
from John Deere for the thorough discussions along the
execution of the research. This project is funded by a
grant from John Deere.

References

[1] J. Viega and G. McGraw, “Building secure software: How to
avoid security problems the right way,” 2006.

[2] M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav, “A survey of
static analysis methods for identifying security vulnerabilities in
software systems,” IBM Syst. J., vol. 46, pp. 265–288, Apr. 2007.

[3] I. Arce, J. DelGrosso, D. Dhillon, C. Kern, T. Kohno, C. Landwehr,
G. McGraw, B. Schoenfield, M. Seltzer, D. Spinellis, I. Tarandach,
and J. Wes, “Avoiding the top 10 of software security design
flaws.” = https://www.computer.org/cms/CYBSI/docs/Top-10-
Flaws.pdf, 11 2015.

[4] L. ben Othmane and A. Ali, “Towards effective security assurance
for incremental software development the case of zen cart
application,” in 2016 11th International Conference on Availability,
Reliability and Security (ARES), pp. 564–571, Aug 2016.

[5] M. Acharya and B. Robinson, “Practical change impact analysis
based on static program slicing for industrial software systems,”
in Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11, pp. 746–755, 2011.

[6] R. Vanciu and M. Abi-Antoun, “Finding architectural flaws using
constraints,” in 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 334–344, Nov 2013.

[7] M. D. Abrams and P. R. Toth, “A head start on assurance,” in
Proc. of an Invitational Workshop on Information Technology (IT)
Assurance and Trustworthiness, (Williamsburg, Virginia), March
1994.

[8] S. Katzke, “Security assurance: Does anybody care?,” in Proc. of
the 21st National Information Systems Security Conference, (Arling-
ton, VA, USA), Oct 1998.

[9] J. Goodenough, H. F. Lipson, and C. B. Weinstock, “Arguing
security - creating security assurance cases.” = https://www.us-
cert.gov/bsi/articles/knowledge/assurance-cases/arguing-
security-creating-security-assurance-cases, Nov. 2014.

[10] H. F. Lipson and C. B. Weinstock, “Evidence of assurance: Laying
the foundation for a credible security case.” = https://www.us-
cert.gov/bsi/articles/knowledge/assurance-cases/evidence-
assurance-laying-foundation-credible-security-case, Nov. 2014.

[11] T. Kelly and R. Weaver, “The goal structuring notation – a safety
argument notation,” Proc. Dependable Systems and Networks -
Workshop on Assurance Cases, July 2004.

[12] D. Grove and C. Chambers, “A framework for call graph
construction algorithms,” ACM Trans. Program. Lang. Syst., vol. 23,
pp. 685–746, Nov. 2001.

[13] B. G. Ryder, “Constructing the call graph of a program,” IEEE
Transactions on Software Engineering, vol. 5, pp. 216–226, May
1979.

[14] O. Lhoták, “Comparing call graphs,” in Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, PASTE ’07, pp. 37–42, 2007.

[15] J. Jürjens, L. Marchal, M. Ochoa, and H. Schmidt, “Incremental
security verification for evolving umlsec models,” in Proc. of the
7th European Conference on Modelling Foundations and Applications,
ECMFA’11, (Birmingham, UK), pp. 52–68, 2011.

[16] “Securechange security engineering for lifelong evolvable sys-
tems.” http://www.securechange.eu/. accessed on Jan.
2019.

[17] A. Bosu and J. C. Carver, “Peer code review to prevent security
vulnerabilities: An empirical evaluation,” 2013 IEEE Seventh Inter-
national Conference on Software Security and Reliability Companion,
2013.

[18] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identify-
ing the characteristics of vulnerable code changes: an empirical
study,” Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering - FSE 2014,
2014.

[19] S. Clark, M. Collis, M. Blaze, and J. M. Smith, “Moving targets:
Security and rapid-release in firefox,” Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security -
CCS 14, 2014.

[20] L. ben Othmane, P. Angin, H. Weffers, and B. Bhargava, “Extend-
ing the agile development process to develop acceptably secure
software,” IEEE Transactions on Dependable and Secure Computing,
vol. 11, pp. 497–509, Nov 2014.

[21] L. Ben Othmane, P. Angin, and B. Bhargava, “Using assurance
cases to develop iteratively security features using scrum,” in
Proc. of Ninth International Conference onAvailability, Reliability and
Security (ARES), 2014, (Fribourg, Switzerland), pp. 490–497, 2014.

[22] C. Theisen, H. Sohn, D. Tripp, and L. Williams, “Bp: Profiling
vulnerabilities on the attack surface,” in 2018 IEEE Cybersecurity
Development (SecDev), pp. 110–119, Sep. 2018.

[23] P. K. Manadhata and J. M. Wing, “An attack surface metric,”
IEEE Transactions on Software Engineering, vol. 37, pp. 371–386,
May 2011.

[24] “T.J. Watson Libraries for Analysis.” http://wala.
sourceforge.net/wiki/index.php/Main_Page. accessed
in Jan 2019.

[25] “Git.” https://git-scm.com/. accessed in Jan. 2019.
[26] “Tool for designing security assurance cases.” https://

github.com/lbenothmane/SecAssuranceCase. accessed
in Jan 2019.

[27] “Graphviz - graph visualization software.” https://www.
graphviz.org/. accessed in Jan 2019.

[28] “Payment card industry (pci) data security standard (dss).”
https://www.pcisecuritystandards.org/document_
library. accessed in Jan 2019.

[29] “The open web application security project OWASP.” https:
//www.owasp.org/, Accessed on May. 2016.

6

=
=
=
http://www.securechange.eu/
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
https://git-scm.com/
https://github.com/lbenothmane/SecAssuranceCase
https://github.com/lbenothmane/SecAssuranceCase
https://www.graphviz.org/
https://www.graphviz.org/
https://www.pcisecuritystandards.org/document_library
https://www.pcisecuritystandards.org/document_library
https://www.owasp.org/
https://www.owasp.org/

	7-9-2019
	Identification of the Impacts of Code Changes on the Security of Software
	Moataz Abdelkhalek
	Ameerah-Muhsina Jamil
	Lotfi ben Othmane
	Recommended Citation

	Identification of the Impacts of Code Changes on the Security of Software
	Abstract
	Keywords
	Disciplines
	Comments
	Rights

	Introduction
	Background
	Assurance Cases
	Call Graphs

	Related Work
	Approach
	System overview - Secure code change analysis toolset
	Evaluation of the proposed approach
	Conclusion
	References

